Handbook for Home and Building Control

5th revised edition
Foreword

Higher demands placed on the security, flexibility and convenience of electrical installations combined with the need to minimise energy requirements have already led to the development of building management systems based on the European Installation Bus (EIB) at the beginning of the 1990s. A similar development with the same goals was running in the French-speaking areas in particular and led to the development of the Batibus. The European Home Systems Association (EHSA) in turn was already working on the principles of networking household appliances (white goods).

The KNX Association was formed to achieve a common worldwide standard. This merger of the previous associations smoothed the way to the KNX standard. KNX is worldwide the only open STANDARD for Home- and Building Control fulfilling the ISO/IEC (14543) as well as the CENELEC (EN50090) and also the CEN (13321) requirements.

This „Handbook for Home and Building Control, Basic Principles“ is an essential element in the implementation of the concept. Craftsmen, planners, wholesalers and operators are introduced to the system and the principal applications on a neutral basis and are also informed about the essential issues of planning, installation, commissioning and expansion.

The fifth edition of the „Handbook for Home and Building Control, Basic Principles“ takes into account the extended possibilities of the KNX system in applications, products and functions. There is additional market potential for manufacturers of hardware and software, electrical wholesalers as well as electrotechnical and IT trades. Practical examples of applications can be found in the document „Handbook for Home and Building Control, Applications“ which is published separately.

In writing this handbook, we would like to extend our thanks to all the employees involved in the ZVEI/ZVEH „Handbook“ and „Training measures“ work groups whose commitment and competence enabled our common concept to be realised.
Contents

1. Introduction
 1.1 EIB – The basis of KNX

2. The applications and benefits of the KNX system
 2.1 Control of lighting, shutters and blinds
 2.2 Individual room temperature control
 2.3 Boiler control
 2.4 Load management
 2.5 Monitoring, display, reporting, operation, telecommunications, IP
 2.6 Security
 2.7 House communication
 2.8 Audio/video
 2.9 Sanitary facilities
 2.10 Household appliances
 2.11 Interfaces

3. The KNX system
 3.1 Bus cable as a transmission medium
 3.1.1 Topology
 3.1.2 Transmission technology
 3.1.3 Bus access
 3.1.4 Telegram structure and addressing
 3.1.5 Structure of the bus devices
 3.1.6 Power supply
 3.2 Power system as a transmission medium
 3.2.1 Topology
3.2.2 Transmission technology 37
3.2.3 Bus access 38
3.2.4 Telegram structure and addressing 38
3.2.5 Structure of the bus devices 39
3.3 Radio as a transmission medium 40
3.3.1 Topology 40
3.3.2 Transmission technology 41
3.3.3 Bus access 43
3.3.4 Telegram structure and addressing 43
3.3.5 Structure of the bus devices 45
3.4 ETS Engineering Tool Software 46
3.4.1 ETS 3 Tester 46
3.4.2 ETS 3 Starter 46
3.4.3 ETS 3 Professional 50
3.4.4 Development of ETS 57
3.5 Configuration types 59
3.5.1 KNX A mode 60
3.5.2 KNX E mode 60
3.5.3 KNX S mode 60

4. Planning, project design and commissioning 63
4.1 Planning 63
4.2 Project design 64
4.2.1 Selection and placing of sensors 65
4.2.2 Selection and placing of actuators 65
4.2.3 Insertion in the distribution board 66
4.2.4 Surface mounting and cavity mounting 66
4.2.5 Bus cable as a transmission medium 67
4.2.6 Power system as a transmission medium 71
4.2.7 Radio as a transmission medium 75

4.3 Installation 77
4.3.1 Bus cable as a transmission medium 77
4.3.2 Power system as a transmission medium 82
4.3.3 Radio as a transmission medium 87

4.4 Commissioning and specific testing 88
4.4.1 Bus cable as a transmission medium 88
4.4.2 Power system as a transmission medium 96
4.4.3 Radio as a transmission medium 101
4.4.4 Mixture of transmission media 102
4.4.5 ETS 3 diagnostics 102

4.5 Documentation 105
4.6 Operation and maintenance 106
4.7 Behaviour in the event of a fault 108

5. Modifying and extending existing installations 113

6. Lightning and overvoltage protection, earthing and equipotential bonding 117

6.1 Necessity for lightning protection 117

6.2 Project design guidelines for lightning and overvoltage protection measures 118
6.2.1 Lightning arrester 120
6.2.2 Surge arrester 120

6.3 Recommendations for the installation of surge arresters 122
6.4 Avoidance of surges as a consequence of loop formation 123
6.5 EMC protection management for structural installations 125
6.6 Earthing and equipotential bonding 125
7. Interfaces to other systems

7.1 BACnet
7.2 DALI 127
7.3 DMX 128
7.4 Internet and IP network
7.5 KNX OPC server
7.6 SMI 130
7.7 Telecommunications
7.8 UPnP 130

8. Applications

8.1 Lighting control in an office, dependent on external brightness and time
8.2 Scene control via operating elements

9. Training

Appendix

A – Terms and definitions
B – Symbols 163
C – Cited norms and other specifications
D – Requirements for KNX bus cables

Index